





# **Technology Deployment**







# **Light Duty Utility Arm**

### Problem

INEEL's High-Level Waste Pretreatment project needed access to the interior of underground storage tanks to gather information on the contents of tanks at the Idaho Nuclear Technology and Engineering Center.

### Baseline Technology

Manually operated approaches.

### Innovative Technology

The Light Duty Utility Arm is a remote-operated robot arm that positions exchangeable tools (end effectors) at almost any point within an underground tank.

### Comparison

Manual approaches may expose workers to radioactive and hazardous materials, and do not allow full access to tank interiors.

#### Benefits

This robotic arm enabled the project to obtain information required to design new treatment systems and model the future transfer of sodium-bearing wastes from the tanks to the treatment.

Project: ID-HLW-101 High Level Waste Pretreatment



## **Light Duty Utility Arm**

### Problem

INEEL's High-Level Waste Pretreatment project needed access to the interior of underground storage tanks to gather information on the contents of tanks at the Idaho Nuclear Technology and Engineering Center.

### Baseline Technology

Manually operated approaches.

### Innovative Technology

The Light Duty Utility Arm is a remote-operated robot arm that positions exchangeable tools (end effectors) at almost any point within an underground tank.

### Comparison

Manual approaches may expose workers to radioactive and hazardous materials, and do not allow full access to tank interiors.

### Benefits

This robotic arm enabled the project to obtain information required to design new treatment systems and model the future transfer of sodium-bearing wastes from the tanks to the treatment.

Home of Science

Project: ID-HLW-105 Closure and Stabilization Activities

**OST#85**